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Abstract

This thesis considers the problem of indoor localization using inertial sensors (IMUs) that are embedded in

almost all smartphones and mobile devices. Significant research has focused on developing pedestrian dead

reckoning (PDR) algorithms that utilize the IMU measurements to track human movement. While Particle

Filters (PF) have offered the best-known accuracy so far, they are also known to suffer from low robustness.

This is not surprising given how IMU data from the real world is highly noisy, mainly due to the arm and

limb gestures of the user.

Since real-world deployments often favor robustness over accuracy, I propose a Bayesian Occupancy Grid

Filter (BOF) that can absorb far greater IMU error compared to PFs. The robustness gains are shown

through extensive simulations and the implementation of a fully functional real-time system that performs in

accordance with our expectations. BOFs are also simple to implement and can be an important step toward

the wide-scale deployment of IMU-based indoor positioning systems.
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Chapter 1

Indoor Localization

Imagine a user, Alice, who wants to navigate to a specific destination within a very large office space.

Conventionally, this would require her to use maps or direction signs to navigate the space. This is in contrast

to outdoor navigation, where a user can use a GPS device to navigate safely to their destination. Despite

digital personal devices becoming pervasive, we do not yet have a mass-market deployment of an indoor

navigation system with the same maturity in functionality that outdoor navigation systems have provided for

decades. One primary challenge holding back the mass deployment is the lack of a localization module that

requires minimal setup, either in terms of hardware infrastructure deployment or time.

This thesis focuses on eliminating external hardware infrastructure requirements. Most of the approaches

for indoor localization in the literature require dense deployments of hardware systems to estimate the user’s

position. Common hardware solutions include Bluetooth, Wifi, and Ultrawideband beacons. One could

argue that many interior spaces today have the required hardware, such as WiFi routers, to provide seamless

networking. However, these routers may require modification since localization necessitates access to the

physical channel [1], [2], which is not universally available. A mass-market system should thus avoid the need

for any hardware infrastructure. Furthermore, RF systems require continuous scanning of wireless channels

that consume large amounts of power.

The only other modalities left are cameras and Inertial Measurement Units(IMUs) because of the restriction

that only sensors built into personal devices can be used. Visual odometry is a mature field that offers

algorithms that perform remarkably well in localization applications. Unfortunately, they come with a caveat:

the lack of privacy. Having a camera recording continuously within a space may not be possible in secure

environments in modern office spaces. We are thus left with just the built-in IMU of personal devices to

perform localization. The IMUs of personal devices have the added benefit of low energy requirements.

IMUs are typically used to estimate device orientation. Beyond this, they have found limited utility in

estimating the motion activity. Although the acceleration measurements provided by the accelerometer can

theoretically be double integrated over time to track position over time, as shown in Figure 1.2, error grows

quadratically due to noise. To address this, systems have relied on constraints inherent to the type of motion

they track. IMUs in smartwatches attached to the wrist have been used to track hand movements [3] by

placing constraints on the range of motion and wrist orientation. When using a gyroscope to estimate wrist

orientation, we can restrict the range of motion possible when double integrating accelerometer measurements.

Similar constraints can be exploited on the range of motion possible for localizing a human user within an

environment. More specifically, as a person moves along a certain trajectory, we can determine when a step
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has been taken. This is done by looking for specific signatures in the IMU signals corresponding to when

a step is taken. We can then update the position estimate based on their facing direction and step length.

This is termed Pedestrian Dead Reckoning(PDR) [4], [5]. However, this problem is fundamentally hard. The

IMU of a personal device is severely affected by activities of the limbs, such as motions of the arms and legs,

typing, talking, etc. The IMU senses the “sum” of all these motions and accurately separates the body’s

displacement from the limb’s interference has almost been impossible.

Furthermore, the signatures may not be unique to a human’s step. Other kinds of motion, such as jumping

or shaking, may also result in similar signatures. It is paramount that we distinguish between these signatures

reliably for accurate localization. Another issue is that step lengths are not fixed quantities. PDR must be

robust against uncertain step lengths.

Dead reckoning, a term borrowed from oceanic navigation, involves accumulating position change mea-

surements over time. Since it doesn’t use any absolute reference for determining position, errors in position

change measurement accumulate over time, causing the position estimate to drift from the true position. To

correct these errors, localization systems have used sensor signal signatures to find ”landmarks” that serve

as absolute references to correct errors [6]. But these systems require setup in the form of location-specific

datasets [7], [8] collected by repeated traversals throughout the indoor environment, tagged with ground

truth data. This data must then be processed offline to determine location-tagged signatures that can be

consistently determined. Finally, data corresponding to these signatures must be installed into the application

whenever the user changes location. This introduced overhead may restrict the deployment of the indoor

localization system in real-world environments.

I restrict the system to localization using a pedestrian dead reckoning algorithm to remove the need for

the aforementioned requirements. PDR is used in a probabilistic framework that restricts the probability

space to within the freely traversable area of the indoor environment. This needs a floorplan of the indoor

space, a requirement that is met because of the navigation component of the system. This map serves as

a ”filter,” constraining the position estimates to within the environment that a person can feasibly reach

indoors.

A common approach to tackling this problem is the particle filter(PF). PFs are initialized with a set

of particles placed at candidate user locations (a prior). As the user traverses the environment (i.e., the

IMU has detected a new step), all the particles are updated based on the IMU measurements and the user’s

motion model. When a particle crosses a barrier in the map, the particle is eliminated (since it could not

have been a correct estimate of the user’s location), and a new particle is spawned (or “resampled”) at one of

the locations of the left-over particles. As a result, the number of particles remains the same, and over time,

they are expected to converge around the user’s actual position.

PFs are designed to absorb some uncertainty because each particle can track one of many possible location

estimates. The larger the number of particles, the greater the PF’s ability to absorb uncertainty. However,

the particle filter can diverge beyond a threshold uncertainty, meaning that none of the particles are within

some radius of the true user location. Figure 1.1 shows a simple example where, at time t0, the particles are

all initialized correctly at the user’s location. If the user’s IMU detects a few false steps, all the particles

can get propagated to incorrect locations along a wall; if the user now makes a turn, all the particles get

eliminated since they walk into the wall. Without a second modality that can measure the user’s absolute

location, there is no principled way to resample the particles.

Towards a more robust probabilistic framework for PDR, I propose a Bayesian Occupancy Grid Filter

(BOF). This filter divides the indoor floor plan into grid cells. Each grid cell that doesn’t contain a wall or an
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Figure 1.1: Divergence of PF due to False Step Count/Length

obstacle stores the probability that the user is within the cell. These cell probabilities are updated according

to a motion model that implicitly accounts for the inaccuracies. By design, the BOF can place support at all

locations a user can traverse within the indoor environment, allowing it to tolerate far greater uncertainty

in step detection, step length, and walking direction. For example, to ensure robustness against false step

detections, some probability mass can be retained in the current cell even if the IMU detects a step. This

ensures that support remains at the true location despite various uncertainties. The trade-offs are that the

size of each cell determines the localization granularity, and the number of cells may get quite large as the

indoor map grows. Results show that simple pruning on the grids can mitigate this problem while upholding

robustness gains.

Firstly, the PF and BOF are simulated on real floorplans by injecting errors in step count, step length,

and walking direction. To maintain parity in computational complexity, all the experiments equalize the

number of particles to the number of grid cells in BOF. After uniformly initializing both filters within the

indoor environment, convergence is tested after a user has walked for N steps in the building. Results show

that PFs handle up to 5% false steps and routinely diverge after that, while BOF can absorb even 28% step

errors. Similar gaps exist for erroneous step length and walking direction as well, suggesting a consistent

robustness gain from BOF. Of course, the PF achieves higher localization accuracy when they do converge,

but when one considers the overall accuracy distribution, it appears that the tradeoff is clearly in favor of

BOF.

Finally, a real-time platform is developed to demonstrate BOF in the real world, consisting of (1) a

real-time smartphone application and (2) miniature IMU hardware attached to a pair of wearable glasses.

Users wear glasses, carry their phones in any way they like, and walk around in our building. Using this

platform, the BOF is shown to run in real-time and localizes the user with a high degree of robustness

compared to the PF. Our demo video is available at https://sinrg.csl.illinois.edu/.

In summary, the contributions of this thesis are as follows:

• I propose a Bayesian Occupancy Grid Filter (BOF) that is simple to realize and offers greater robustness
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Figure 1.2: Conventional IMU based Dead Reckoning

in PDR-based indoor localization.

• I present simulation results comparing the robustness of the BOF against a Particle Filter (PF) for

varying uncertainty parameters.

• I also demo a real-time system using a smartphone and wearable IMU, where the results align with the

simulations.
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Chapter 2

Pedestrian Dead Reckoning

Pedestrian Dead Reckoning(PDR) is an indoor localization technique that exploits the user’s gait to determine

their position. Its main appeal is it requires just an IMU attached to their person. Unlike other indoor

localization techniques that require additional infrastructure, using just an IMU enables the algorithm to

be more widely deployable. With the increasing prevalence of IMUs built into personal devices, a user isn’t

restricted by the type or form factor of devices they need to localize themselves.

The crux of PDR is detecting when a user takes a step and then updating the estimate of their position

by adding a displacement along their facing direction. It first takes an input as an approximate estimate of

the user’s initial position. Assuming there exists a good estimate of the distance a user covers after every

step, the algorithm can track the user reasonably well over a few steps. This chapter covers how both step

detection, as well as facing direction, can be tracked using an IMU.

2.1 Inertial Measurement Units

Inertial measurement units (IMUs) consist of 3 odometric sensors: the accelerometer, gyroscope, and

magnetometer. Each measures specific quantities along the three standard X,Y, Z axes: the accelerometer

measures acceleration, the gyroscope measures angular velocity, and the magnetometer measures the magnetic

field.

IMUs are extensively used as a sensing modality in personal devices. Nearly every consumer portable

device is outfitted with IMUs to allow them to perform functions such as orientation estimation, motion

detection, and activity tracking. Since they sense quantities intrinsically from the device without requiring

external infrastructure, they are ubiquitous for localization in both indoor and outdoor scenarios.

As stated earlier, a wide variety of algorithms exist for device orientation estimation using IMUs. The

orientation estimates allow us to model the user’s facing direction while they traverse the indoor environment.

In the following section, we mathematically describe how this is performed.

2.2 Orientation Estimation using Inertial Measurement Units

The three sensors in the IMU can be used to estimate the orientation of a device with respect to a fixed global

frame of reference with remarkable accuracy. The gyroscope tracks the angular velocity in the device’s frame

of reference, which can be used to estimate the global orientation over time by integration. The gyroscope’s
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Figure 2.1: Euler angles

measurements, unfortunately, have noise, which can be corrected by incorporating the accelerometer and

magnetometer measurements. The accelerometer provides estimates of the gravity vector that can be used to

correct errors in the downward axis estimates from the gyroscope. Similarly, the magnetometer measures

the Earth’s magnetic field. This vector is linearly independent of the gravity vector and can be used to

correct errors in the facing direction or heading estimates. The magnetometer can, unfortunately, be used

only outdoors because of the presence of magnetic anomalies indoors. These anomalies corrupt the Earth’s

magnetic field, causing drift in the heading estimates over time.

Orientation of a device can be tracked using three orthonormal vectors [vxt vyt vzt ], v
∗
t ∈ R3 that track

the orientation at instant t. These represent the standard X,Y, Z axes of the global frame in the device’s

local frame of reference, where X points right, Y points forward, and Z points upward. In the local frame,

the algorithm assumes that the three standard axes [ex ey ez] correspond to the front, right, and upward

directions of the device.

ex =
[
1 0 0

]T
, ey =

[
0 1 0

]T
, ez =

[
0 0 1

]T
(2.1)

Since v∗t are orthonormal vectors, RL
t = [vxt vyt vzt ] represents a rotation matrix that transforms any

vector uglobal in the global frame to the device’s local frame.

ulocal = RL
t · uglobal (2.2)

To track the orientation of the device over time, the algorithm must estimate the matrix RL
t over instants

t. The rotation matrix RL
t belongs to the rotation group SO(3) which represents rotations in R3 [9]. This

means that given two of its columns, the third can be estimated using the 3D cross product. In practice, the
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forward vector vyt and the downward vector −vzt are tracked. The right vector vxt can be computed as:

vxt = vyt × vzt (2.3)

Let’s assume the algorithm is provided initial estimates of the two vectors vy0 and −vz0 . These two are

tracked over time using angular velocity estimates from the gyroscope. The gyroscope provides three angular

velocity measurements. These measurements, denoted by [ωx
t ωy

t ωz
t ]

T are provided along the standard

axis of the device in its local frame. For example, ωx
t is the angular velocity about ex. These measurements

can be integrated over time to obtain the change in orientation about the three standard axes:

[θxt θyt θzt ]
T = δt[ωx

t ωy
t ωz

t ]
T (2.4)

Here δt represents the sampling interval of the gyroscope. The orientation of the device can then be

estimated by updating the local estimate of the global axes. The estimate of the global axis changes in the

opposite direction as the measured angular change. The following rotation matrices can be defined as follows

since the rotation angles are measured about the standard axes:

Rx(t) =

1 0 0

0 cos(−θxt ) −sin(−θxt )

0 sin(−θxt ) cos(−θxt )

 (2.5)

Ry(t) =

 cos(−θyt ) 0 sin(−θyt )

0 1 0

−sin(−θyt ) 0 cos(−θyt )

 (2.6)

Rz(t) =

cos(−θzt ) −sin(−θzt ) 0

sin(−θzt ) cos(−θzt ) 0

0 0 1

 (2.7)

R(t) = Rx(t) ·Ry(t) ·Rz(t) (2.8)

Thus, the updated estimate of global axes can be computed as:

vyt+δt =R(t) · vyt (2.9)

−vzt+δt =R(t) · −vzt (2.10)

2.2.1 Drift correction using Complementary filtering

Gyroscope measurements tend to be corrupted by noise, which accumulates over time. The orientation

estimates could drift quite quickly if this noise isn’t corrected. An absolute reference is needed to correct

these errors. When the IMU is stationary, the accelerometer provides a noisy estimate âzG of the vector

corresponding to the acceleration due to gravity azG. This vector approximately aligns with the global

downward vector −vz in the local frame of reference. The normalized vector that the accelerometer provides
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is denoted with:

vGt =
âzG

||âzG||
(2.11)

The accelerometer estimate of the gravity vector is heavily affected by noise due to the motion of the

IMU. Although the mean of the accelerometer’s downward direction estimate converges to the true downward

direction vz, this estimate has a high variance. On the other hand, the measurement of the downward

direction obtained by integrating the gyroscope measurements −vzt has low variance but diverges in mean

over time. To get better estimates, both sensors need to be combined.

Various algorithms that fuse both the accelerometer and gyroscope estimates have been proposed. One

such algorithm is the complementary filter [9]. In this thesis, this sensor fusion algorithm is implemented.

The complementary filter performs a weighted average on two sensor measurements. The sensor with

high-frequency noise is provided with a smaller weighing factor, while the sensor with better low-frequency

performance is provided with a larger weight factor. In the case of fusing the accelerometer and the gyroscope,

the gyroscope-based measurements have low variance but drift over time. This can be thought of as low-

frequency noise. On the other hand, the accelerometer converges to the true value in mean but has a lot

of variance in its measurements. This can be characterized as high-frequency noise. Both sensors can be

thought of as behaving in a complementary manner.

Let’s denote the mixing coefficients as α, β. Since the fused measurements are to be an unbiased estimate

of the quantity, they must sum to 1.

α > 0, β > 0

α+ β = 1 (2.12)

The fused estimate of the downward vector −v̂zt can now be calculated after normalizing:

−v̂zt =
α(−vzt ) + βvGt

||α(−vzt ) + βvGt ||
(2.13)

This new estimate will no longer be orthonormal to the forward vector vyt , although it should still be

linearly independent of it. The two vectors can now be orthonormalized to obtain our optimal estimates of

the forward and downward vectors. Since −v̂zt is our current optimal estimate of the downward direction,

this vector can be preserved, and instead, the orthonormal vector that spans the same subspace as vyt and

itself can be found.

This can be performed using cross-products. The subspace spanned by the downward and forward vector

is orthogonal to the right vector. Thus, the optimal forward vector v̂yt can be computed by performing two

consecutive inner products.

v̂xt =
vyt × v̂zt

||vyt × v̂zt ||
(2.14)

v̂yt = v̂zt × v̂xt (2.15)
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In outdoor environments, the magnetometer provides a similar reference for the forward vector vyt in the

local frame by measuring the Earth’s magnetic field. Unfortunately, the magnetometer cannot be utilized

indoors due to the presence of magnetic anomalies. This results in an error persisting while estimating vyt ,

and consequently, vxt , which causes yaw estimates to drift from the true value over time.

2.2.2 Heading Estimation

Using v̂xt , v̂
y
t and v̂zt , the heading Θt of the device can be estimated. First, the rotation matrix R̂L

t can be

expressed as R̂L
t = [v̂xt v̂yt v̂yt ]. This matrix can be decomposed into Euler angles Θ, Φ, and Ψ. Θ is the

angle about the Z axis and is the heading. Φ is the angle about the Y axis and is the roll, and Ψ is the angle

about the X axis and is the pitch. When applied to a global vector, R̂L
t performs rotations based on these

Euler angles to transform the vector into the IMU’s local coordinates, 2.2. To perform this rotation, R̂L
t

applies the inverse of these angles to obtain the local vector. Lets denote this inverse as R̂G
t . Since R̂L

t is an

orthonormal matrix, its inverse is its transpose.

R̂G
t = (R̂L

t )
T (2.16)

uglobal = RG
t · ulocal (2.17)

This matrix is decomposed into the product of the individual rotation matrices described by the Euler

angles:

R̂G
t = R̂x

t (Ψ) · R̂y
t (Φ) · R̂z

t (Θ) (2.18)

=

 cos(Ψ)cos(Θ) −cos(Ψ)sin(Θ) sin(Ψ)

cos(Ψ)sin(Θ) + sin(Ψ)sin(Φ)cos(Θ) cos(Ψ)cos(Θ)− sin(Ψ)sin(Φ)sin(Θ) −sin(Ψ)cos(Φ)

sin(Ψ)sin(Θ)− cos(Ψ)sin(Φ)cos(Θ) sin(Ψ)cos(Θ) + cos(Ψ)sin(Φ)sin(Θ) cos(Ψ)cos(Φ)


(2.19)

Thus, the heading of the IMU at instant t, Θt is given by the following, which is assumed to correspond

to the user’s facing direction.

Θt = tan−1(− R̂G
t [1, 2]

R̂G
t [1, 1]

) (2.20)

2.3 Step Detection

When a person takes a step, the accelerometer picks up this signal as a distinct signature, as shown in figure

2.2b. The figure shows the total magnitude of the accelerometer across the three orthogonal axes. A reference

template can be defined corresponding to this signal, and this template can be searched in the accelerometer

input stream. Since the duration of a step may vary based on factors such as the person’s speed, this signature

may appear warped along the time axis. DTW distance is used to find the step signature in the accelerometer

signal.
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(a) Human Locomotion

(b) Accelerometer signal

Figure 2.2: Step Detection
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Figure 2.3: Template matching using Dynamic Time Warping

2.3.1 Dynamic Time Warping

When two sequences need to be compared, a common metric is to use an L2 norm after aligning them. If

there are two vectors X,Y ∈ Rn, the distance between them can be defined as

d(X,Y ) = ||X − Y ||2.

In the time series template matching problem, a common scenario is having one of the sequences warped

along the time axis. Thus, both sequences may no longer be of the same length. Dynamic Time Warping(DTW)

is an algorithm that provides a metric to compare two sequences that are invariant under warping along the

time axis. This is done by allowing many-to-one mappings between the two sequences. Given two sequences

X = (x1, ..xo) ∈ Ro and Y = (y1, ..yp) ∈ Rp, DTW(X,Y ) is defined as:

DTW(X,Y ) = f(o, p)

f(i, j) = ||xi − yj ||2 +min


f(i− 1, j − 1)

f(i− 1, j)

f(i, j − 1)

f(0, 0) = 0

This distance can be efficiently computed using dynamic programming. For matching a data stream to a

fixed template, there exists a modification to this algorithm called SPRING [10].

2.3.2 Variable Step Type

An important factor to consider is the variation in the type of stride taken by the user. The signature

observed in the accelerometer signal will differ based on the striding speed, which is low when walking slowly,

in contrast to running. Unique templates can be defined for each type of movement to distinguish between

the types of movement in a multiple-hypothesis testing framework. Let Sk ∈ Ro, k ∈ {0, ..K} be the K

unique templates corresponding to the unique stride sequences. The stream of indexed accelerometer samples
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{aq}, q ∈ N come in at regular time intervals, with as being the latest sample. Let ar, r < s refer to the last

accelerometer sample of the previously detected step. The DTW distance can be found between observed

sequence A = {ar+1, ..as} and {Sk}:

dk(A) = DTW(A,Sk).

The hypothesis can be referred to as Y k corresponding to the type of stride k, with Y 0 being the null

hypothesis. Its likelihood can be defined as Pk(A) ∼ pk(dk(A)). The priors can be defined as πk based on

past step information and assume uniform costs. The Bayes decision rule δB(A) is expressed by:

δB(A) = argmax
0≤k≤K

πkpk(dk(A))

2.3.3 Uncertainty in Step Detection and Length

A variance in the step length always exists, even when tailor-made for a particular user. Regardless of the

number of IMU signal templates defined for different types of steps, the PDR algorithm needs to account for

variances in the step length. Furthermore, there is always a finite probability of a false step detection. A

template for a step might be spuriously detected due to the irregular motion of a user. PDR needs to be

modeled as a probabilistic estimation problem to account for these uncertainties.
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Chapter 3

Particle Filter for Pedestrian Dead

Reckoning

Pedestrian dead reckoning can be modeled as a linear dynamic system. This state-space system is defined as

a random variable that evolves over time. Assuming the position of the user is Xn−1 after n− 1 steps, the

user’s position transitions as follows whenever a step is detected:

Xn−1 =

[
xn−1

yn−1

]
(3.1)[

xn

yn

]
=

[
xn−1

yn−1

]
+ Y k

n

[
cos(Θn)

sin(Θn)

]
(3.2)

Here, position evolves in 2D Euclidean space, with coordinates xn, yn. The step length corresponds to Y k
n ,

and the user’s facing direction at the current step is denoted by Θn. This model assumes free space, i.e., no

map constraints are enforced. This dynamic model can be termed as q(xn|xn−1, Y
k
n ,Θn).

3.1 Recursive Filtering

Because of imperfect information, position must be modeled as a random variable. The current position

estimate Xn where xn = [xn yn]
T ∈ R2 has a probability density P (xn|Θ1:n, Y

k
1:n,M), where M refers to

the constraints placed by the indoor map. This density can be modeled recursively based on the sequence of

step lengths, facing directions, and map constraints.

P (xn|Θ1:n, Y
k
1:n,M) =

∫
R2

P (xn|xn−1,Θn, Y
k
n ,M)P (xn−1|Θ1:n−1, Y

k
1:n−1,M)dxn−1 (3.3)

The term P (xn|xn−1,Θn, Y
k
n ,M) represents the dynamic model, while P (xn−1|Θ1:n−1, Y

k
1:n−1,M) rep-

resents the position distribution at the previous step. A Kalman filter can estimate this system since the

dynamic model is linear and recursive.

Linear models such as the Kalman filter [11] are well known to model linear state-space systems. The
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Kalman models the variable of interest as a unimodal Gaussian Distribution that evolves according to the

Linear dynamic model. Unfortunately, these linear models fail when the underlying space is discontinuous or

the state has to be modeled as a multi-modal probability distribution.

The state space of an indoor environment is no longer a 2D Euclidean space because of the presence of

walls and obstacles over which one cannot place any non-zero probability mass. A Kalman Filter cannot be

directly used to enforce map constraints since it assumes support over Euclidean or locally Euclidean spaces

such as differentiable manifolds [12]. The discontinuities cannot be modeled directly. Some extensions to the

Kalman filter that can incorporate map information exist. M. F. Mansour and D. W. Waters [13] designate

infeasible regions in the map as polygons and project the state estimate onto the closest polygonal edge.

Unfortunately, it is still inherently unable to represent multi-modal distributions.

3.2 Particle Filtering

Particle filtering [14], which is a Sequential Monte Carlo method, is ideal for not only modeling distributions

in discontinuous probability spaces, but also for non-linear dynamic systems. The crux of the particle filter is

to generate N IID samples corresponding to the required distribution P (xn|Θ1:n, Y
k
1:n,M). It then outputs

the conditional mean predictor X̃n

X̃n =
1

N

∑
u

x[u]
n (3.4)

which is the sample mean of the N IID samples drawn from the required distribution.

The sampling process is performed as follows. The uth particle can be sampled from the position

distribution at the previous step as:

x
[u]
n−1 ∼ P (xn−1|Θ1:n−1, Y

k
1:n−1,M) (3.5)

The particle can then be propagated using P (x
[u]
n |xn−1,Θn, Y

k
n ,M). Unfortunately, this dynamic model

has no closed-form expression since the map M enforces discontinuities. Instead, the particles are propagated

according to the linear dynamic model q(xn|xn−1, Y
k
n ,Θn).

x[u]
n ∼ q(.|x[u]

n−1, Y
k
n ,Θn) (3.6)

The probability distribution represented by the particles now corresponds to P (xn|xn−1,Θn, Y
k
n ), which

approximates our required distribution. It doesn’t incorporate the map information. To get the true

distribution, weights are assigned to each of the particles through importance sampling. Each particle is

assigned an importance weight based on how well it represents the true probability distribution. These

importance weights are the ratio of the true probability distribution that needs to be estimated with respect

to the approximated probability distribution.
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Figure 3.1: Particle Filtering for PDR

w[u] =
P (x

[u]
n |xn−1,Θn, Y

k
n ,M)

P (x
[u]
n |xn−1,Θn, Y k

n )
(3.7)

=
P (M |x[u]

n , xn−1,Θn, Y
k
n )

p(M |xn−1)
(3.8)

= 1{x[u]
n collides with M} (3.9)

The indicator function 1{x[u]
n collides with M} chooses particles that have valid updates given the map

constraints. Given the step length and azimuth, particles that collide with or cross barriers are given zero

weights, eliminating them, while the ones that survive represent the true distribution.

Surviving particles can now be resampled so as to keep the number of particles constant after successive

steps. Over time, the particles should converge to the user’s true position as incorrectly initialized particles

are filtered out by the map.

3.3 Robustness against Uncertainty

To improve the robustness of the PF, uncertainties in the step length and facing direction must be accounted

for. A standard technique for this is sampling the step length and facing direction for every update from a

distribution rather than the estimated values. Step lengths and headings can be sampled from distributions,

with the step length mean as the detected step Y k
n ’s length and the heading mean as Θn, respectively. With

enough particles, the PF should capture the true distribution of the user’s position.

Another uncertainty that needs to be accounted for is during step detection. False step detections can
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cause particles at the true locations to propagate incorrectly within the indoor map. These propagated

particles may be eliminated because of collisions with a barrier present along the facing direction of the false

step. To mitigate this issue, modification is proposed where, for every particle, a binary random variable

Q[u] is sampled with probability p when a transition occurs. If the Q[u] turns out to be 1, the particle is

propagated according to the transition model, but the particle is kept static if Q[u] equals 0.

Even with the above modification to the Particle Filter, divergence is still observed during Pedestrian

Dead Reckoning if the error regimes are large in estimating the facing direction and step parameters. A

collapse in the distribution causes this if the map filters out particles representing the true position. In our

experiments, this issue persists even when the total number of particles was increased.
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Chapter 4

Bayesian Occupancy Grid Filter

As seen in the previous chapter, a Particle Filter for Pedestrian Dead Reckoning doesn’t offer the robustness

required to continue tracking a user when there is a high uncertainty step detection, length estimation, and

orientation estimation. This occurred primarily due to a lack of sufficient support to represent the user’s

probability distribution within the indoor environment. When the sensor noise is high, which in this case is

the IMU step detection module, particles tend to propagate incorrectly. In the specific case of an indoor

environment filled with walls and other obstacles, improperly propagated particles tend to collide with them,

resulting in particles being resampled away from areas near the obstacles. If the user’s true position is

actually near an obstacle, but particles in these areas are propagated incorrectly, the particle filter diverges.

Resampling strategies may also fail in certain floor plans without an additional modality to reset the particles

to the user’s true location.

Since the primary cause of failure was a lack of support in the case of the particle filter, an efficient

framework is needed for tracking multi-modal probability densities, a requirement for discontinuous probability

spaces, while also placing a finite amount of probability mass at every reachable location. To satisfy this

requirement, I propose the Bayesian Occupancy Grid Filter (BOF) that can track such a distribution across

a large indoor floor plan. The capability to have finite support at every position in the environment ensures

robustness even with only an IMU of a personal device as the sensing modality.

The Bayesian Occupancy Filter (BOF) models the position of the user within an indoor environment

after step n, Xn using a probabilistic grid. Xn is now a random variable with its probability space as a grid

superimposed onto the indoor map. Free space is modeled as grid cells ci, and the absence of a cell represents

barriers. A cell ci is assigned the probability of the presence of the user in that cell after n steps, P (Xn = ci).

For brevity, this is denoted as P (xi
n). This framework can thus capture the multi-modal distribution of the

user’s position within a discontinuous 2D space.

Representing the probability space as a grid provides finite support at all possible locations a person could

occupy within an indoor map. Although the resolution of the grid limits the precision at which we can track

a user, this approach prevents the probability collapse that plagues particle filter-based approaches for PDR.

Although the number of grid cells increases by the square of the floor plan length, this does not pose an

issue regarding computation in most scenarios for indoor localization. In extremely large floor plans, indoor

spaces can be separated into smaller disjoint zones, and the user can be localized within only one of them.

Furthermore, most indoor Pedestrian tracking applications require no more than sub-meter level accuracy to

provide a good user experience, requiring a precision of no more than a cell length of 30cm. This is far better
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(a) Occupancy Grid

(b) Bayesian graph

Figure 4.1: Occupancy Grid Filter

than the 4.9-meter accuracy that GPS provides, even in open-air conditions [15].

4.1 Motion Model

Our goal is to estimate the position Xn after n detected steps. This probability evolves as steps Y k
1:n are

detected that occur along facing directions Θ1:n, subject to the constraints of map M . The probability

density of Xn, which is modeled by the distribution P (xi
n|Θ1:n, Y

k
1:n,M) is termed the motion model and is

represented by the Bayesian Graph in 4.1b. As shown in the Bayesian Graph, the model represents a Markov

chain in the position Xn. The state evolves whenever a step is detected along the estimated facing direction.

The motion model can be simplified as follows:

P (xi
n|Θ1:n, Y

k
1:n,M)

=
P (xi

n,Θn, Y
k
n |Θ1:n−1, Y

k
1:n−1,M)

P (Θn, Y k
n |Θ1:n−1, Y k

1:n−1,M)
(4.1)

= ηP (xi
n,Θn, Y

k
n |Θ1:n−1, Y

k
1:n−1,M) (4.2)

= η
∑
j

P (xi
n,Θn, Y

k
n |xj

n,Θ1:n−1, Y
k
1:n−1,M)P (xj

n−1|Θ1:n−1, Y
k
1:n−1,M) (4.3)

= η
∑
j

P (xi
n,Θn, Y

k
n |xj

n−1,M)P (xj
n−1|Θ1:n−1, Y

k
1:n−1,M) (4.4)

In the first equation, I apply the Bayes rule to express the joint pdf of the current position and the current
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(a) Position update Y k (b) Facing direction Θ

Figure 4.2: Update models for the BOF

variables of interest Θn and Y k
n at step n. The denominator η = P (Θn, Y

k
n |Θ1:n−1, Y

k
1:n−1,M) is just the nor-

malizing constant that can be obtained by marginalizing the joint distribution P (xi
n,Θn, Y

k
n |Θ1:n−1, Y

k
1:n−1,M)

over all cells. η ensures that the total probability mass remains as unity.

1

η
= P (Θn, Y

k
n |Θ1:n−1, Y

k
1:n−1,M) (4.5)

=
∑
i

∑
j

P (xi
n,Θn, Y

k
n |xj

n−1,M)P (xj
n−1|Θ1:n−1, Y

k
1:n−1,M) (4.6)

P (xj
n−1|Θ1:n−1, Y

k
1:n−1,M) is the probability density of previous position estimate Xn−1. When the user

takes step Y k
n , I update the probabilities of each of the grid cells as per the user’s facing direction Θn. The

factor P (xi
n,Θn, Y

k
n |xj

n,M) incorporates the user’s yaw Θn and step length corresponding to Y k
n . This term

propagates the probability density, akin to a transition function in a particle filter. This transition function

can be factored as follows:

P (xi
n,Θn, Y

k
n |xj

n−1,M)

= P (xi
n, Y

k
n |xj

n−1,M)P (Θn|xi
n, Y

k
n , xj

n−1,M) (4.7)

As seen in equation 4.7, the transition function can be factored into two terms. P (xi
n, Y

k
n |xj

n−1,M) models

the probability that cell ci can be reached from cell cj if the stride taken was Y k
n , as shown in figure 4.2a.

The heading transition function P (Θn|xi
n, x

j
n−1, Y

k
n ,M) models whether facing direction Θn is valid for the

given choice of cells ci, cj and Y k, 4.2b.

The step-length-based transition probability P (xi
n, Y

k
n |xj

n−1,M) models the map constraints, and is

non-zero only for cells ci that can be reached from cj . It’s normalized to unity for every cell cj .

∑
i

P (xi
n, Y

k
n |xj

n−1,M) = 1 (4.8)

This ensures that every cell cj propagates all of its probability mass to its reachable neighboring cells

after step n is taken. If an angular estimate Θn is uniform or absent, the normalization of P (xi
n, Y

k
n |xj

n−1,M)

ensures that our belief that xj was the correct probability mass at time n− 1 doesn’t change. Since all of its

probability mass remains in the density after transition at step n, although distributed to its neighbors, the

belief that cj did not actually contain the user isn’t being filtered out. The probability of a cell from where

a step n was taken actually contained the correct belief at time n− 1 should not change regardless of the
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number of reachable neighbors it has. Otherwise, there will naturally be a bias towards cells that have more

neighbors.

The filtering occurs in earnest because of the heading transition function P (Θn|xi
n, x

j
n−1, Y

k
n ,M). This

function acts as a filter, selecting cells ci that can be reached from cj by taking a step along the facing

direction Θn. This function behaves as an indicator and is non-zero only if the previous constraint is met.

This function has the effect of maximally propagating the probabilities of cells that have the largest number

of neighbors reachable by taking step Y k
n along Θn. If none of its neighbors meet this criterion, none of the

probability mass contained in cell cj propagates during step n. This has the net effect of filtering out the

probability that cj truly contained the user at step n− 1 since the user could not have taken step n from this

position.

In practice, placing a finite density in the same cell even after a step is taken is useful to ensure robustness

against false step detections. I also model P (Θn|xi
n, x

j
n−1, Y

k
n ,M) to account for a broad bias in estimates

of the facing direction. Probability is transitioned to cells that are up to 45 degrees in angular distance

away from Θn, forming a cone. Furthermore, the step length Y k
n is not just a singular value. Instead,

P (xi
n, Y

k
n |xj

n−1,M) assigns a probability to cells that are widely distributed about a mean step distance Y k
n .

Since the probability space is a set of grid cells over a discontinuous 2D grid, the mean position in terms

of the 2D spatial coordinates of each grid cell may not lie on the grid itself. For example, if the position

distribution is bimodal, with a wall between the two modes, the mean position could lie on the wall itself,

which is not a valid user position. Instead, the BOF outputs the cell with the maximum probability as the

current user position at step xn.

xn = argmax
i

P (xi
n|Θ1:n, Y

k
1:n,M) (4.9)

4.2 BOF vs PF

The advantage of using the occupancy grid filter over the particle filter is that a single transition function

with support in the position space itself models the uncertainty in step detection, length, and yaw estimates.

Unlike the particle filter, BOF does not suffer from the curse of dimensionality. The particle filter would

require sampling particles with different step lengths and headings, which requires a large number of particles.

The BOF accounts for these uncertainties by having wider transition functions P (xi
n, Y

k
n |xj

n−1,M) and

P (Θn|xi
n, x

j
n−1, Y

k
n ,M). The computational complexity remains the same regardless of how concentrated

these transition functions are.

4.3 Fusion of other sensing modalities

The Particle Filter has historically been used as a framework for fusing multiple sensing modalities. When a

sensor measurement is performed, particles can be weighted through importance sampling. By weighting

particles based on how much they conform to the probabilistic model of the sensor, particles can be resampled

to maximize the posterior distribution.

A similar procedure can be performed using the Bayesian Occupancy Grid Filter. If a new sensor

measurement zt is obtained at time t, it can be used to filter out grid cells that are unlikely to produce such

a measurement. For example, if a high RSSI value is obtained from a beacon from a known location, the
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weight of cells far away from the beacon can be decreased.

Lets assume at time t, n steps have been detected, and the current position estimate Xn conforms to the

distribution P (xi
n|Θ1:n, Y

k
1:n,M). The likelihood that the measurement zt was produced when the user was at

cell ci after n steps can be denoted as P (zt|Xn = ci) or concisely P (zt|xi
n). Thus, the posterior distribution

is now:

P (xi
n|zt,Θ1:n, Y

k
1:n,M) =

P (zt|xi
n)× P (xi

n|Θ1:n, Y
k
1:n,M)

P (zt)
(4.10)

4.4 Bayesian Occupancy Grid Filter without Initial Heading

In the case of the BOF and the PF for dead reckoning, the algorithms assume that both an initial estimate

in the facing direction and the user’s position are provided to them. The requirement for the initial position

estimate can be eased as long as a user walks within the indoor environment for a long enough time for their

position estimate to converge. Illustrative examples are provided in Appendix A. The sharper the user’s

estimate of their initial position, the faster the convergence. If the user knows their room at the initialization

step, the algorithm can converge within a few steps of walking outside the room. Conversely, if the initial

location provided is the entire floorplan, the user’s trajectory only converges for certain indoor topologies,

and the user follows a long enough trajectory.

The initial facing direction is a more rigid requirement for the initialization procedure. Without the initial

heading Θ0, the algorithm has no knowledge of the true facing direction Θn at a step n since its estimate is

derived by adding Θ0 to the integral of the angular velocity measurements over time. Fortunately, the facing

direction can also be modeled as a random variable whose probability density is propagated over time. As

a user walks within the indoor environment, mapped obstacles can filter this distribution until the facing

direction estimates converge to the true facing direction.

Instead of initializing the facing direction Θ0 along the user’s true initial direction, a random variable Φ

should be defined uniformly along all possible initial facing directions. Due to obvious constraints, Φ can

only be initialized along a finite set of angles between −π and π. To account for the continuous space [−π, π)

along which the initial angle could lie, the robustness of the BOF can be exploited. Since the BOF is robust

to facing direction bias while tracking position, Θ0 can only be assigned along a few equally spaced angles

such that the angular spacing δϕ is greater than the bias threshold. As long as the BOF can account for bias

greater δϕ, Φl, l ∈ {1, L} only needs to be assigned along L = 2π
δϕ angles.

In summary, the joint distribution of both the current position as well as the initial heading as estimated.

The distribution P (xi
n,Φl|θ1:n, Y k

1:n,M) is tracked which jointly characterizes joint probability of the current

position and the initial facing direction. Previously, Θn represented the current estimate of facing direction.

We now track the change in heading wrt. the initial heading at step n as θn. The current facing direction

assuming the lth initial heading is thus

Θn,l = Φl + θn. (4.11)

The motion model can now be modified to the following:
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P (xi
n,Φl|θ1:n, Y k

1:n,M) =
P (xi

n,Φl, θn, Y
k
n |θ1:n−1, Y

k
1:n−1,M)

P (θn, Y k
n |θ1:n−1, Y k

1:n−1,M)
(4.12)

= η′P (xi
n,Φl, θn, Y

k
n |θ1:n−1, Y

k
1:n−1,M) (4.13)

The distribution P (xi
n,Φl|θ1:n, Y k

1:n,M) in equation 4.12 is just the product distributions of the position

xi
n and initial facing directions Φl. This is equivalent to having L individual BOFs that separately track each

with a unique initial facing direction Φl. The only difference lies in the normalizing constant η′, which is now

marginalized across all combinations of positions and initial headings.

1

η′
= P (θn, Y

k
n |θ1:n−1, Y

k
1:n−1,M) (4.14)

=
∑
l

∑
i

∑
j

P (xi
n,Φl, θn, Y

k
n |θ1:n−1, Y

k
1:n−1,M) (4.15)

The equations for motion can now be derived similarly to the regular BOF with the initial heading:

P (xi
n,Φl|θ1:n, Y k

1:n,M)

= η′P (xi
n,Φl, θn, Y

k
n |θ1:n−1, Y

k
1:n−1,M) (4.16)

= η′
∑
j

P (xi
n,Φl, θn, Y

k
n |xj

n, θ1:n−1, Y
k
1:n−1,M)P (xj

n−1,Φl|θ1:n−1, Y
k
1:n−1,M) (4.17)

= η′
∑
j

P (xi
n,Φl, θn, Y

k
n |xj

n−1,M)P (xj
n−1,Φl|θ1:n−1, Y

k
1:n−1,M) (4.18)

Each BOF tracks the position xi
n at step n independently assuming the its own unique initialization

angle Φl. Each BOF is initialized based on the initial facing direction distribution, which can even be

uniform in practice. As the user walks around the indoor environment, BOFs tracking the incorrect initial

facing directions tend to collide with obstacles more than the true initial facing direction. The total cells

having non-zero support decreases for the former as compared to the latter. Since the marginalization step

is performed across all BOFs jointly, the total probability mass corresponding to incorrect initial facing

directions decreases. As the number of steps increases, the probability mass concentrates at the true initial

facing direction.

The update step is also similarly modified as:

P (xi
n,Φl,θn, Y

k
n |xj

n−1,M)

= P (xi
n,Φl, Y

k
n |xj

n−1,M)P (θn|xi
n,Φl, Y

k
n , xj

n−1,M) (4.19)

This approach to removing the requirement for initial position comes with the tradeoff of multiplying the

computational complexity of the original BOF by the number of possible initial headings L. To make this

algorithm computationally feasible for real-time applications, a fast implementation of the BOF is required.
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4.5 Fast Implementation using Sparse Matrix multiplication

The Bayesian Occupancy Grid Filter tracks the probability density P (xi
n|Θ1:n, Y

k
1:n,M) on a grid space. The

probabilities of every cell ci can be stored in a dense vector x̂n for every step n. The step-length transition

function P (xi
n, Y

k
n |xj

n−1,M) would then be a pre-computed matrix multiplication applied on the previous

step’s probability vector. Since the map is known in advance, the transition function will be a set of scalars.

By substituting equation 4.7 in 4.4:

P (xi
n|Θ1:n, Y

k
1:n,M)

= η
∑
j

P (xi
n,Θn, Y

k
n |xj

n−1,M)P (xj
n−1|Θ1:n−1, Y

k
1:n−1,M) (4.20)

= η
∑
j

P (xi
n, Y

k
n |xj

n−1,M)P (Θn|xi
n, Y

k
n , xj

n−1,M)P (xj
n−1|Θ1:n−1, Y

k
1:n−1,M) (4.21)

Which in vector form can be written as:

x̂i
n = η

∑
j

P (xi
n, Y

k
n |xj

n−1,M)P (Θn|xi
n, Y

k
n , xj

n−1,M)x̂j
n−1 (4.22)

= η
∑
j

yki,jP (Θn|xi
n, Y

k
n , xj

n−1,M)x̂j
n−1 (4.23)

The normalizing constant can simply be applied by dividing x̂n by the sum of its entries
∑

i x̂
i
n.

The only issue holding us back from implementing the BOF as a matrix multiplication is the term

P (Θn|xi
n, Y

k
n , xj

n−1,M) which is unique to every facing direction Θn ∈ [−π, π). This function would have to

be computed for every pair of i, j during every transition.

To alleviate this issue, the robustness of the BOF can be exploited again, similar to how BOF was

performed without initial heading estimates. Instead of defining a heading transition function for every angle,

only a fixed number of transition functions need to be defined for a set of discrete angles. The transition

function of the heading closest to the current facing direction can then be used.

Mathematically, this can be described using the BOF with no initial heading. Separate probability vectors

can be defined for every initial angle x̂l
n. Using the transition function in equation 4.19, and substituting it

into 4.18,

x̂l,i
n = η′

∑
j

yki,j,lP (θn,Φl|xi
n, Y

k
n , xj

n−1,M)x̂l,j
n−1 (4.24)

The step transition function yki,j,l is equal to yki,j since it doesn’t consider the heading angle as described in

section 4.1. The heading transition function P (θn,Φl|xi
n, Y

k
n , xj

n−1,M) can be written as P (Θn,l|xi
n, Y

k
n , xj

n−1,M),

where Θn,l follows equation 4.11.

The set of angles for which there is a predefined transition function are defined as Ψs, s ∈ {1, S}. Instead
of directly using P (Θn,l|xi

n, Y
k
n , xj

n−1,M), P (Ψs|xi
n, Y

k
n , xj

n−1,M) can be used, where
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Ψs = min
Ψr

|Θn,l −Ψr|, r ∈ {1, S} (4.25)

Thus, the precomputed transition function can be defined as

x̂l,i
n = η′

∑
j

yki,jα
s
i,j x̂

l,j
n−1 (4.26)

with a unique transition matrix F s,k with elements fs,k
i,j for every step length Y k and heading angle Ψs

fs,k
i,j = yki,jα

s
i,j (4.27)

x̂l
n = F s,kx̂l

n−1 (4.28)

When the initial heading is present, only one probability vector x̂l
n needs to be transitioned along the

angle Ψs closest to the current heading Θn.

4.5.1 Exploiting sparsity

The total number of cells needed to span an entire indoor environment is usually of the order O(( Lδl
2
)), where

L is the length of the indoor environment, and δl is the length of a cell. This number can be around 16000

for a reasonably sized environment. The transition function involves multiplying a vector of this length by a

square matrix, which would be far too big for real-time applications.

But as shown in figure 4.2a, the number of cells a user can reach after taking a step is far smaller. The

step transition function yki,j is non-zero only for a limited number of neighboring cells. This the matrices F s,k

are extremely sparse in practice, with not more than 25 elements per row. The BOF can now be expressed as

a matrix multiplication between a sparse matrix and a dense vector. Sparse matrix multiplications can be

performed using highly optimized libraries for even large matrices.
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Chapter 5

Evaluation

To show the effectiveness of the proposed Bayesian Occupancy Grid Filter, its robustness is evaluated for

errors in step detection, length, and facing direction. Given an accurate indoor floor plan and a step model

of the user, the BOF algorithm can handle errors far better than a PF. The experiments were conducted

on the second floor of the Coordinated Science Lab at UIUC. Its floor plan was used to determine the free

areas where users could navigate by discretizing the space. Barriers were modeled wherever walls and other

obstacles were present in the floor plan. These barriers served to filter the PF whenever particles crossed

them. In the case of the BOF, the discretization was done using a grid, with each cell being δl × δl, equal to

30cm by 30cm. The grid has a size of 212 by 82 cells, which gives 17383 cells in total. Cells that contained

barriers were constrained to have 0 probability.

In our comparisons with the PF, the number of particles used was kept the same as the total number of

cells to ensure parity in computational complexity. Each cell stores a double value to indicate the probability

of the user being in the cell.

5.1 Simulation

Experiments were conducted by simulating fixed trajectories along the floorplan. Each trajectory used for

the experiments had a fixed step length, step count, and facing direction to simulate ideal ground-truth

conditions. They were also initialized from fixed starting points distributed across the floorplan.

During the simulations, each trajectory was initialized in a uniform area that included the true starting

point, and these areas ranged from the entire floor to a small room. This reflects real-world scenarios where a

user may not have access to the algorithm’s coordinate system and exact starting location measurements.

These trajectories and their initialization areas are described in Appendix A.

First, an example is shown of how both the PF and the BOF are robust to false step detection in simulation.

In figure 5.1, this evaluation process is illustrated. The reference is first shown closed-loop trajectory used,

consisting of 88 steps. The reference closed-loop trajectory, marked with blue, shown in 5.1a, starts and ends

at the top left corner of the path, marked by the green cross. I initialize the user’s location uniformly in a

large indoor area for both algorithms.

When either algorithm is provided accurate step detects, step lengths, and facing directions, they converge

to the correct final location. If the number of false step detections increases, the PF is found to be only

resilient to six false step detections before it diverges. On the other hand, the BOF can handle around 25
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false step detections. In the example, the number of particles used for the PF is 17000, and all grid cells are

active in the case of the BOF.

(a) Closed Loop Trajectory (b) PF Uniform initialization

(c) PF convergence with 6 false steps (d) PF failure with 7+ false steps

(e) BOF Uniform initialization (f) BOF convergence with 25 false steps

Figure 5.1: Illustration of the robustness of PF and BOF against false step detections.
In the case of the PF, each red dot represents a particle, while

for the BOF, the colored regions represent cells with finite support.

5.1.1 Robustness

Figure 5.2 shows a formal comparison of the two algorithms. The performance comparison uses a predefined

set of five trajectories. In the trajectory shown in 5.1, the initialization is half the floor plan, and the route is

closed-loop. The algorithms are evaluated by adding a random number of false step detects and random

biases to independently simulate each type of inaccuracy that appears in the real world. The other four

trajectories are described in Appendix A.

During testing, the objective of the algorithms was to converge to the true endpoint at the end of the

trajectory, and the reported result measures the Euclidean error between the true endpoint and the location

at which the algorithm converged. Experimental samples where either algorithm converges to a point 3m

away from the endpoint were marked as diverged. In the case of the Particle Filter, when divergence occurs,

all particles tend to be eliminated, requiring resampling. When this occurs, the previous sample mean of the

particles is reported as the final location. This is then used to compute the error.

Both algorithms are compared based on the number of particles used for the PF and the active cells for

the BOF. For the BOF, the active cell count was maintained by pruning cells below a threshold determined

by ordering the cells based on their probability. A larger number of particles/active cells provides a larger

support for the position to ensure robustness at the cost of computational requirements.
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(a) Robustness to False Step Detection

(b) Robustness to Facing Direction Bias

Figure 5.2: Comparison of the robustness of PF and BOF against false step detections and bias in facing
direction.

Only samples that have converged have been included in the boxplots, and
the percentages above the boxplot whiskers represent the fraction of samples that diverged

5.1.2 False Step Detection and Length

First, the algorithms’ robustness to false step detection is compared in figure 5.2a. Both algorithms were

tested by adding or subtracting a random number of steps from the true trajectories while maintaining

the correct facing direction and step length. All five trajectories were simulated five times, resulting in 25

runs for every combination of particle/cell count and error percentage. The boxplots for all these runs are

plotted after pruning the cases where the filters diverged. The percentage of cases where the filters diverged

is mentioned above the whiskers.

These results also capture the algorithms’ robustness against step length variance. Since we use a finite

number of fixed templates for the various step types, the updates are performed with specific step lengths

for both filters. The variance in the user’s true step length arises in the form of either more or fewer step

detections due to the user traveling a variable length distance with each step. If the user travels a greater

distance with each step than the length according to the original step model, the total number of steps needed

to traverse a corridor will be less than expected, and vice-versa. Thus, robustness to false step count enables

robustness against step length variance.

As the total number of particles decreases, the error increases for the PF. Furthermore, the PF consistently

diverges in all scenarios. We often observe this happening in cases where the initialization area was large and

false steps were detected early. In contrast, the error in the case of the BOF remained consistently lower

than the PF. In the case of 100 active cells, we observe a lower error in the converged samples because of the

smaller active support, but this reduces robustness, resulting in some samples diverging. However, we see no

divergence up to 1000 active cells in the case of the BOF.
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Figure 5.3: BOF convergence with no initialization for Trajectory 1

5.1.3 Direction bias

The algorithms’ robustness to bias in facing direction estimates is compared in figure 5.2b. I tested both

algorithms by adding a consistent facing direction bias to one path of each trajectory while maintaining

true step count and length. All five trajectories were simulated four times, resulting in 20 runs for every

combination of particle/cell count and error percentage.

Unlike in the case of false step count, we see the error remains consistent across all particle counts and

active cells in the converged samples. The PF consistently has a lower error than the BOF after convergence.

But unlike the BOF, we see some samples diverging regardless of particle count for the PF. This divergence

worsens as the number of particles decreases. We only observe divergence when the number of active cells for

the BOF is 100.

5.1.4 Convergence with no facing direction initialization

Next, the case where the initial heading is no longer provided is simulated. I show how the BOF converges

when no initial heading information is available. In the previous section, the BOF was shown to converge

after the user walks around an indoor environment, even if their original position was initialized uniformly

throughout the indoor floor plan. This convergence occurs due to the asymmetry in the floorplan that is

exploited by choosing a specific trajectory. Although the user’s location is uniformly initialized, only one

possible initial location could permit such a trajectory in the given environment. The BOF is able to converge

onto the correct final location corresponding to the trajectory taken after starting at the only possible initial

location.

The same principle applies to the case where no initial heading is provided. Unless a trajectory and facing

direction pair are unique to an initialization, the BOF cannot converge after the trajectory. If multiple initial

position/facing direction pairs exist, the BOF converges to a multimodal distribution corresponding to all of

the valid positions. To illustrate this phenomenon, I run the BOF for the scenarios in A.1 and A.4.

In the first case, the convergence of the BOF is shown in figure 5.3. Here, we see a bimodal distribution.

This is because the trajectory, shown in figure A.1a, is a closed loop. The starting position could have been

at two positions. If the starting/ending position were at the green cross at the top left of the path, the initial

facing direction would have been towards the right. If the starting position were at the bottom right, the

initial facing direction would have been towards the left. Both are valid for the given trajectory. Since the

position was initialized uniformly for both starting positions, the BOF converges to both permissible locations

instead of converging to a single position.

We see convergence in the second scenario shown in figure 5.4, corresponding to A.4. Given the uniform
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Figure 5.4: BOF convergence with no initialization for Trajectory 4

(a) Smartglass platform (b) Android application

Figure 5.5: Real-time System

initialization, this is because there is only one valid combination of initial position and heading from which

the trajectory could have been traversed. The BOF correctly converges to the final position, denoted by a

red cross, shown in figure A.4.

5.2 Real-time System Implementation

The system was developed on the Android platform to run the core algorithms and the user interface. The

core algorithms were implemented on the native C++ layer. The UI was implemented on the Unity 3D

renderer. The sensors consisted of the inbuilt IMU of the Android Smartphone and a pair of smart glasses

with an integrated IMU. The glass was equipped with a Bluetooth transmission radio, through which it could

communicate with the smartphone. Finally, an HRTF audio-cue navigation system was developed to serve as

an additional modality for user interaction. These audio cues simulate directional sound, as though a virtual

assistant guides the user.
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Chapter 6

Conclusion

In this thesis, we have seen that indoor localization for a pedestrian is possible by performing dead reckoning

with just the built-in IMU of a personal device. Given the layout of the indoor environment in advance, it is

possible to determine the user’s position without any external infrastructure. The two algorithms described,

namely the Particle Filter and the Bayesian Occupancy Grid Filter, can both perform reasonably well in low

error regimes.

Even without any initial estimates of the user’s position, both algorithms can converge to the user’s true

position after they traverse a reasonable distance within the environment. But when we operate in high error

regimes, i.e., when there is an error in estimating step count, step length, and facing direction, the BOF can

still perform exceptionally well, unlike the PF. The particle filter is especially prone to diverge because of fall

step detections, as it may no longer place support at the user’s true location.

To demonstrate its effectiveness, the BOF is shown to ensure robustness for indoor localization in scenarios

with low measurement accuracy. Compared to the PF, which has been previously used extensively for indoor

localization, the BOF is far more robust to false step detections, step length inaccuracies, and facing direction

estimates. In challenging scenarios where the user’s position is uniformly initialized throughout the entire

indoor map, the BOF doesn’t diverge even when the number of active cells is just 1000. This is in contrast to

the PF, which diverges even when there are 17000 active particles, even in realistic scenarios where a user is

initialized within a room-sized area.

One of the most common assumptions for navigation is that the initial facing direction is provided to the

algorithm. In outdoor navigation systems, magnetometers are commonly used to estimate this by tracking

the Earth’s magnetic field. However, magnetometers are not reliable for indoor navigation systems. Magnetic

anomalies contaminate the Earth’s magnetic field, preventing its estimation. Instead, indoor navigation

systems rely on some other external infrastructure or user input to initialize this variable.

The BOF provides a computational framework that allows us to challenge this assumption. The initial

heading can be tracked as a random variable, and the map information can be used to converge to its true

value if the trajectory the user takes doesn’t have other symmetric candidates.

Although this brute-force approach may not seem possible in real-time applications, this is shown not

to be true. The facing direction is a random variable that can take any value between −π and π. However,

because of the robust BOF, we only need to track a small number of heading initialization values within this

interval. By optimally tracking equally spaced heading directions, we can still achieve convergence.

Furthermore, the BOF lends itself to be framed as a sparse matrix-multiplication problem. Unlike a PF,
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where a resampling step must be performed after every step transition, the BOF only requires the probability

vector representing the cell probabilities to be multiplied by an appropriate sparse matrix. Sparse matrix

multiplication is a well-studied problem in computational hardware, and most architectures offer optimized

libraries to perform it.

The appeal of the PF is the capability to fuse other sensing modalities quite easily. This is shown to be

true even of the BOF. The procedure is similar to the PF, where the posterior probability of the user present

at a certain cell is derived given a sensor measurement. We also have the benefit of skipping any resampling

requirement for the BOF.

Thus, we can conclude that the BOF is better suited to be the framework of choice for Pedestrian Indoor

Localization than the PF. In the high error regimes of Pedestrian Dead Reckoning, where only an IMU is the

sensing modality, the BOF manages to stay robust to sensing errors. Furthermore, its low complexity in

implementation requirements and computation makes it well-suited for real-time requirements.

The real-time performance of the BOF is also demonstrated on an Android-based prototype. This

application is able to navigate a user to their destination within an indoor layout of the Coordinated Science

Lab at UIUC using the IMU built into a wearable glass prototype.
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Appendix A

Simulation Trajectories

Here are the five trajectories used to perform the simulation experiments for evaluating the BOF for Robustness

against false step detections and facing direction bias. In all cases, the green cross denotes the true starting

position, while the red cross denotes the end position. Each blue dot along the trajectory represents a step

being taken.

Both the BOF and the PF are initialized in the area denoted covered with blue. All the grid cells within

the blue area are initialized with uniform probability for the BOF. On the other hand, particles are randomly

sampled within the blue area in the case of the PF.

A.1 Trajectory 1

This trajectory represents a closed loop, so both the initial and the final location in the trajectory are the

same. The user is initialized to half the area of the indoor map, presenting a challenging scenario for both

algorithms.

(a) Trajectory (b) Uniform initialization area

Figure A.1: Trajectory 1

A.2 Trajectory 2

This trajectory is the most challenging scenario tested, where the user is initialized uniformly within the

entire indoor map. The effectiveness of the BOF is showcased in this scenario, where the filter converges to

the user’s location after traversing along a long trajectory, even with the presence of uncertainties.
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(a) Trajectory (b) Uniform initialization area

Figure A.2: Trajectory 2

A.3 Trajectory 3

This trajectory is a simpler scenario, with the initialization area being about a fourth of the total indoor

map. But the endpoint is in a room, an area that has a replicated type of topology. False steps cause the

position estimates to diverge to a different room incorrectly.

(a) Trajectory (b) Uniform initialization area

Figure A.3: Trajectory 3

A.4 Trajectory 4

The previous cases represented challenging scenarios where the user doesn’t know their starting location.

This case represents a more reasonable use case where the user knows what room they are present in and

initializes their location to that room.

(a) Trajectory (b) Uniform initialization area

Figure A.4: Trajectory 4

A.5 Trajectory 5

This is another case where the user knows which room they are currently in. This room is smaller than the

previous case and is a more forgiving scenario.
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(a) Trajectory (b) Uniform initialization area

Figure A.5: Trajectory 5
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